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The partially directed compact lattice animal model on the square lattice is 
solved exactly for the cluster number and average cluster radius along the direc- 
ted axis in terms of the appropriate generating functions. For the critical 
exponents we find 0 = 0 and v I = 1. Caliper size distribution along the directed 
axis is also calculated analytically. It is used to confirm vii = 1 and to study 
some finite-size scaling properties for this model. For the perpendicular cluster 
radius distribution, a combination of analytic arguments and computer results 
leads to a conjecture on the exact form of the appropriate generating function 
and to the result va = �89 Some calculations are reported for the triangular lattice 
and for hypercubic lattices in d >  2. 

KEY W O R D S :  Lattice animals; cluster radius exponents; directed clusters; 
finite-size effects. 

1. I N T R O D U C T I O N  

Recently, we reported (~) exact derivation of the number generating function 
for the partially directed compact lattice animal model on the square lat- 
tice. In the present work, we summarize new comprehensive studies of this 
model, including new analytic results for several cluster radius generating 
functions, and examine finite-size scaling properties and also some 
e x t e n s i o n s  to  d >  2. A c h a r a c t e r i s t i c  l a r g e - N  a s y m p t o t i c  g r o w t h  l aw for  t he  

n u m b e r  of  d i s t i n c t  c o n n e c t e d  N-s i t e  c lu s t e r s  ( l a t t i ce  a n i m a l s )  r e a d s  

C N ~ N  O~v" (1.1) 

while the cluster radii increase according to 

R t j ( N ) ~ N  v'' a n d  R a ( N ) ~ N  ~i (1.2) 
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These quantities will be defined precisely in the following sections. Our 
results for directed compact animals are 

0 = 0 ,  vii = 1, and v 2-2-• (1.3) 

The observation that compactness and directional constraints, when 
combined, may lead to solvable systems was reported by Derrida and 
Nadal. (2/ Their model is, however, too restrictive in that the asymptotic 
behavior differs from the generic laws (1.1)-(1.2). Bhat et al. (3) considered 
the fully directed compact lattice animals on the square lattice. This model 
has not been solved analytically, although high-precision numerical studies 
were reported. (~'3) For  a partially directed version, generating function 
techniques can be used to obtain exact results. (1) 

In Section 2, we define the model and introduce a generating function 
formalism that encompasses the results of Ref. 1, but also permits 
calculation of a parallel cluster size measure Rll, thus leading to 0 = 0 and 
vii = 1. Derivation of the parallel caliper size distribution is reported in 
Section 3. It is used to confirm vii = 1 and in Section 4 is employed to 
investigate the form of the finite-size scaling for this model. Section 5 is 
devoted to studying the perpendicular cluster size measures. Analytic 
arguments and numerical results are combined to conjecture the exact form 
of the appropriate generating function, leading to v• = �89 In Sections 6 and 
7, we consider the triangular and hypercubic-lattices, respectively. Exact 
results are reported for the number generating functions; universality and 
dependence on the dimensionality d are discussed. 

The exponent values and the form of the finite-size scaling for compact 
animals are similar to those for directed walks. Indeed, we find that the 
structure of these animals is walklike in several aspects; Section 5 gives 
details and discussion. 

2. G E N E R A T I N G  F U N C T I O N  F O R M A L I S M  

Our model is defined on the square lattice with spacing 1. The origin 
(J(, Y) -- (0, 0) is a site in every cluster. The remaining N -  1 sites must be 
reachable from the origin by a partially directed walk of nearest neighbor 
steps in the + X and _+ Y directions, between cluster sites. We also add the 
condition that the point ( 0 , - 1 )  is not in a cluster, to avoid counting 
animals t~at differ only by overall translations. Finally, compactness is 
imposed at each "time" level, i.e., for fixed values of the directed coordinate 
Jr, by requiring that all cluster sites with the same X form a sequence of 
nearest neighbors. (There is no restriction in the case of a single site at a 
given X.) 
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Let ON(k) denote the number of distinct N-site animals having exactly 
k "root" sites at X = 0 ,  with Y=0,  1,.., k -  1. Thus, CN(k ) = 0  for N < k  and 
ck(k) = 1. For each N-site, k-root animal, let x,  denote the X coordinates of 
the sites: n =  1,2 ..... N. With the index a used to label all the k-root 
animals, we define the generating function 

Fk(z, u) = ~ z u(a)-k uZ~"l= .~,r (2.1) 
a 

where N(a) is the number of sites in the ath animal and xn(a ) are the 
appropriate X coordinates. Since 

Fk(z, 1)= ~ Cu(k) 2 N-k (2.2) 
N=~ 

the calculation of Fk(z, 1), accomplished in Ref. l, leads to results on the 
behavior of CN(k ). 

One way of defining the cluster size measure along the X axis is by 
averaging the center-of-mass X coordinate, 

' i  
- x , ,  ( 2 . 3 )  
N / ~ I  

over N-site animals. With the index b used to label all the N-site clusters, 
we have 

RII(N ) = CN l N -l x,(b) (2.4) 
b = l  n :  1 

so that 

CN N 

NCNRII(N)= 2 ~ x.(b) ~N'' ' -~ (2.5) 
b = l  n : - I  

We can also define Rll(N,k ) for k-root clusters only. The 
generating function takes the form 

relevant 

We will now proceed to calculate the left sides of (2.2) and (2.6). 
Generating functions for CN and NCNRlI(N ) without a prescribed root size 
will also be obtained. Let us emphasize that the first-moment cluster size 
measures, as in (2.4), vanish identically for symmetric axes. Thus, 

f~(z) =- [_F c~Fk(z'u)]~u u=I = u=k ~' NCNRt'(N'k) zN-~ (2.6) 
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analogous definition is not possible for R~(N): see Section 5 for further 
discussion. 

For  each (N ~> k + 1)-site animal with k root at X =  0, the N - k  sites 
not in the root form a smaller animal with a root of m sites at X =  1. This 
m root is not pinned with its lowest Y site at Y=0 ,  but can occur in 
k + m -  1 different locations, as implied by the connectivity rules. Let the 
index a label the originally defined m-root animals, i.e., with the root at 
X = 0 and its lowest site at Y= 0. Then we can write the following relation 
for Fk defined in (2.1): 

Fk(z,u) 1+ ~ (k+m 1) = - -  E Z N(a)  u z#~q {x,(,) + 1 1 =  (2.7) 
m = l  a 

where the first term corresponds to the k root itself. The multiplicity factor 
(k + m - 1 ) was explained above, and the x, + 1 are used to account for the 
shift of the m root to X =  1. By inspection of the appropriate defining 
relations, one can check that (2.7) is summarized by 

Fk(z, u ) =  1 + ~ ( k + m -  1)(zu) m Fm(zu, u) (2.8) 
m = l  

The u - 1  relation, 

Fk(z, 1 ) = l +  ~ ( k + m - 1 )  z ~aFm(z, 1) (2.9) 
m = l  

was considered in Ref. 1. One is ultimately interested in the quantity 

A(z)= ~ CNZX= ~ znrn(z, 1) (2.10) 
N 1 n = l  

which generates the total number of N-site animals c N, Rearrangement of 
(2.9) yields 

Fk(z, 1 ) = kA(z) + B(z) (2.11) 

where all the k dependence is displayed. The functions A(z) and B(z) can 
be calculated (1) by substituting (2.11) in the k =  1 and k = 2 relations (2.9). 
Then the k > 2 relations are satisfied automatically (~) by (2.11), The results 
a r e  

A(z) = z(1 -- z)3/(1 - 5z + 7z 2 - 4z 3) (2.12) 

B ( z ) = ( l - z ) 2 ( 1 - 3 z + z 2 ) / ( l - 5 z + 7 z 2 - 4 z  3) (2.13) 
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The singularity of A(z)  [and  B(z) ]  nearest to the origin is a simple pole at 
ze = 2 -~ < 1, where 

2 = 3.20556943040... (2.14) 

[for  the exact expression for 2 see Ref. 1 or  Eq. (7.5)]. The asymptot ic  form 
(1.1) for cu corresponds to the ( 1 -  2z) ~  ~ singularity in the generating 
function A(z); thus, 0 = 0  for this model. Detailed calculations of  the 
behavior  of  CN and fixed-root CN(k) as N--* ~ were presented in Ref. 1. 

We now proceed to calculate the derivative appearing on the left side 
of (2.6). Relation (2.8) can be replaced by 

(-;) F~ , u  = l +  ( k+m-- l ) z '~ 'F ,n ( z ,u )  (2.15) 
m = l  

Differentiation with respect to u and the substi tution u = 1 lead to 

dFk(z, 1 ) 
f ~ ( z ) = z  - -  + )., ( k + m -  1)z"fm(z)  (2.16) 

dz  m - I  

where f~(z) were defined in (2.6). Since both terms on the right are linear in 
k, we conclude that 

f~(z) = kC(z)  + D(z) (2.17) 

The functions C(z) and D(z) can be calculated by substitution in the first 
two relations (2.16). A tedious algebraic calculation yields 

z(1 - z)4(1 - 2z)(1 - 4z + 10z 2 - 8z 3 + 8z 4 - 2z 5) 
C(z) - (1 - 5z + 7z 2 - 4z3) 3 (2.18) 

27.2( l - z)3( 1 - 5z + 1022 - 1223 q- 15z 4 - 7z 5 + 2z 6) 
D(z) = (1 - 5z + 7z 2 - 4z3) 3 (2.19) 

The generating function for quantities NCNRjr(N ) defined by (2.5) can 
be expressed in terms of  f~(z) as follows: 

E(z) =- ~ ENcNRII(N)] z N= ~ zkf~(z) (2.20) 
N = I  k = l  

which, by (2.17), reduces to 

E ( z ) = z ( 1 - z )  2 [ C ( z ) + ( 1 - z ) D ( z ) ]  

z2(1 - z)2(1 - 4z + 8z 2 - 8z 3 + 12z 5 - 10z 6 q- 4z 7) 
= (1 -- 5z + 7z 2 - 4z3) 3 (2.21) 
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The asymptotic behavior in (2.5) corresponds to the ( 1 - 2 z )  -(vl~+2-~ 
singularity in E(z). Since E(z) has a cubic pole at Zc, we conclude that 

vlL = 1 (2.22) 

for the compact directed animal model. 

3. CALIPER SIZE D I S T R I B U T I O N  

In this section we consider the caliper size distribution along the direc- 
ted axis X. Let CN,L(k ) denote the number of distinct N-site, k-root animals 
with exactly L columns, i.e., with X ranging from 0 for the "root" column 
to L -  1 for the last column. The following properties are straightforward: 

l 
O, N<k+(L-1)  

CN, L(k)= k, N=k+(L-1)  (3.1) 

6eVk, L= 1 

Recursion relations for CN, L(k ) c a n  be derived by considering the connec- 
tivity rules formulated in Section 2. We have 

N--k (L 2) 

CN,L(k)= ~ (k+m--1)r (3.2) 
m~l 

where the upper limit on m is obtained from the "conservation of sites" 
condition 

mmax + (L-  2)= N--k (3.3) 

Note that (3.2)is consistent with (3.1). 
It is useful to introduce the double-generating function 

G~(z,v)= ~ ~ s L (3.4) 
L~I N=k+(L 1) 

By using (3.1), we have 

Gk(Z, 1J)--D= ~ ~, CN,L(k) zN--kl) L (3.5) 
L = 2  N~k+(L--I) 

Substitution of (3.2) in the right side of this relation and rearrangement of 
the resulting triple sum yields 

Gk(z,v)=v[l + ~', (k+rn--1)z'Gm(z,v)] (3.6) 
m = l  
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This relation is similar to (2.9): the k dependence is linear, 

Gk(z, v) = v[kA(z, v) + B(z, v)] (3.7) 

The extended functions A(z, v) and B(z, v) reduce to A and B of Section 2 
at v=  1 [i.e., A(z, 1)=A(z),  etc.]. These functions can be calculated by 
substituting (3.7) in the k = 1, 2 relations (3.6). A long calculation leads to 

UZ( 1 - -  Z )  3 

A(z, v) - [1 - (4 + v)z + (6 + v)z 2 - (4 - v + v:)z 3 + (1 - v ) z  4 ] ( 3 . 8 )  

(1 - z ) 2 [ ( 1  - z )  2 -  v z ]  

B(z, v) = [1 - (4 + v)z + (6 + v)z 2 - (4 - v + v2)z 3 + (1 - v)z 4] (3.9) 

One possible definition of the parallel cluster size measure rll(N) is 
given by the first moment of the spanning size L, 

N 

CNrlI(N)= ~ LCN, L~NVH-~ N (3.10) 
L = I  

where 

N (L 1) 

CN, L ~ E CN,L(k) 
k=l 

The appropriate generating function is defined as 

N N - - ( L - I )  

H(z) =- ~ [ c J l , ( N ) ]  zN= ~ 2 
N = I  N = I  L = I  k - - 1  

Rearranging the sums, one can show that 

(3.11) 

Lcx.L(k)z N (3.12) 

H(z )=  ~vvk~l zkGk(z, V) = A(z, v) 
v = l  v = l  

(3.13) 

where the identification of the k sum with A(z, v), analogous to (2.10), 
follows by examination of the k term in (3.6). Thus, we get 

z ( 1 - - z ) 3 ( 1 - - 4 z +  6z2--3z  ~ + z 4) 
H(z) = (1 - -5z+  7za--4z3) 2 (3.14) 

confirming vii = 1. Indeed, the asymptotic form in (3.10) corresponds to the 
( 1 - 2 z )  -(vl~-~ l)singularity in H(z). 
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4. F I N I T E - S I Z E  S C A L I N G  P R O P E R T I E S  

In the preceding section we found that the quantity A(z, v) given by 
(3.8) can be represented as 

k = l  L = I  N=L 

where cu,L are defined by (3.11). If we regard the z N factor as fugacity 
weight in a grand-canonical-type ensemble, then A(z, v) "generates" the 
fixed-L partition functions 

ZL(Z) == - f CN, L ZN ( 4 . 2 )  

N=L 

It can be used to calculate thermodynamic quantities. Furthermore, one 
possible definition of the parallel correlaltion length is 

H(z) [OlnA(z,v)  1 ~ ( z , ._z )_  ~ (4.3) 
~tb(z) A(z, 1 ) -  ~v ~,=1 

where the asymptotic divergence with exponent vql = 1 follows from the 
explicit results of Section 3; see (2.12), (3.12), and (3.14). 

Consider now a system of finite extent M ~ilong the x axis. The cluster 
sites can only have X coordinates 0, 1,..., M -  1. The appropriate generating 
function for this finite-size problem is analogous to A(z, v) in (4.1), but 
with the L values restricted to L ~< M, 

M 

AM(z, v) =-- ~ vLZL(z) (4.4) 
L = I  

The form of the large-L asymptotic behavior of thermodynamic and 
correlation quantities for z near z c - 1/2 is described by the finite-size 
scaling, (4) the formulation of which for anisotropic systems was reviewed, 
e.g., in Ref. 5. Specifically, for the animal number generating function 
considered in Section 1, we expect 

AM(z, 1) 
A~(z, 1) 
- -  ~ P ( z )  (4.5) 

where the scaling combination ~ is defined by 

- M/ill(Z) ~ ( zc -  z )M (4.6) 
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Similarly, if we define a finite-system, correlation length-like quantity 

~M(z) = [2 In AM(z, 
c3v v)]~= 1 (4.7) 

then 

~M(Z)/~II(Z ) ~ Q(r) (4.8) 

The scaling functions P(r) and Q(r) are universal. (6/We will focus on the 
ratio (4.5), establish the scaling relation, and calculate the scaling function 
P(r). It will be apparent, however, that the calculation can be extended to 
(4.8) and other quantities defined in the grand canonical ensemble. 

The M =  oo generating function A(z, v) given by (3.8) can be represen- 
ted in the form 

I 1 1 ] A(z' v ) -  (1-- z)3 [v z 2 (z ) - -  v + ( z ) ] - I  1 - - / ) / { ) (2 )  1 -- u/-/) + (z i (4.9) 

where 

(1 - z )  2 
v+_(z) = 2z 2 [-1 -F- z -}- (1 + 6Z-}-Z2) 1/2] (4.10) 

are the roots of the denominator of (3.8). It follows that the fixed-L 
partition functions defined in (4.4) are given by 

I - - Z  
Z c ( z ) = ( 1  +6z+z2)l/2 Iv L_(z)-v_;C(z)]  (4.11) 

This result can be used to calculate exactly various finite-M quantities. 
However, for the scaling analysis it is convenient to work with the large-L 
expressions only. Therefore, we consider the difference [compare (4.5)] 

Aoo(z, 1)--AM(z, 1)= ~ ZL(Z) (4.12) 
L=M+I  

The functions v+(z) given by (4.10) have the following property for 
O<z<Zc: 

- v + ( z ) > v  (z)> l (4.13) 

At z~., we have 

- v  +(zc) > v_(zc) : 1 (4.14) 
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For large M and L ( > M ) ,  the contribution to (4.12) due to the v+ term in 
(4.11) constitutes an exponentially small (oscillating) correction, which 
does not contribute to the leading, scaling behavior. The v_ contribution, 
however, is divergent as z ~ z~. For  the scaling description, we can use 

Ao~(z, I)--AM(z,  1)m 
1 - z  v _ ~ ( z )  

( 1 - 6 z + z 2 )  1/2v ( z ) - I  
(4.15) 

In the limit z -~ z~- the denominator of (4.15) vanishes, while the v M term 
can be represented as 

v M ( z ) = e x p [ - - M l n v _ ( z ) ] ~ e  k~ (4.16) 

since In v (z) has a simple zero at zc. Near zc, In v can be replaced by 
v_ - 1 and the constant k evaluated as 

k = l i m { [ v  ( z ) - l ] ~ l l ( z ) }  
z ~  z c 

[ 4(l_-4z+6z2-3z3___+z 4) 7 
= [_z(1 + z + ( ) ( 2 - - 5 z + z 2 + ~ z ) J ~ c  = 1 (4.17) 

where 

~ = ~ ( z ) = ( l + 6 z + z 2 )  1/2 (4.18) 

Note that all the factors in the rational expression are finite at zc, and that 
the last two steps in (4.17) each requires substantial algebraic calculations. 
Inspection of the relations (4.15), (4.16), and (2.12) leads to the scaling 
form (4.6) with 

The constant K is given by 

P(r) = 1 - Ke -~ (4.19) 

l m z  
K =  lim 

. . . . .  ~(z)[v ( z ) - l ] A ( z ,  1) 

= I  .(l + z + ~ ) ( 2 -  5z + z2 +~z)] =1 
4~(1 - z) 2 ~c 

(4.20) 

The comments following (4.18) apply here as well. In summary, the univer- 
sal finite-size scaling function P(v) takes the form 

P(~)----- 1 - -e  -~ (4.21) 
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5. P E R P E N D I C U L A R  C O R R E L A T I O N  E X P O N E N T  

The definition of cluster radius measures along the Y axis requires the 
use of the second or higher even-power moments  of the cluster size 
distribution, because of the _ Y symmetry. One possible definition, 
reminiscent of the radius-of-gyration forms used for isotropic animals, is 
introduced as follows. Let the index a label all the N-site animals and y,(a) 
denote the Y coordinates of the sites in the ath cluster, n = 1, 2,..., N. We 
define R I ( N  ) via 

N%NR~(N)= ~, N 2 y . ( a ) -  1 u 2 
~=1 ,=1 N =lYm(a) (5.1) 

Thus, R• is the root-mean-squared deviation from the center-of-mass Y 
coordinate. The factor N 2 is introduced to make the left side of (5.1) an 
integer number. 

We were not able to find a recursion relation for the appropriate 
generating function 

W(z) = ~ [NZcNR~(N)] 2 N (5.2) 
n 1 

However, all the generating functions encountered thus far have had a 
similar pattern of singularity structure: an integral power of the polynomial 
( 1 -  5 z +  7 z 2 - 4 z  3) in the denominator  [-see (Z12)]. Thus, we conjecture 
that W(z) takes the form 

w(z) 
W(z) - co(z)(1 - 52 + 7z 2 - 4z3) p (5.3) 

where w(z) and co(z) are polynomials. 
We generated the numbers N2CNR~(N) numerically for N =  1, 2 ..... 18 

by direct enumeration of all possible clusters. An appropriately modified 
version of a standard computer  algorithm (v~ was used. The results are sum- 
marized in Table I. From the first 18 terms in the power series expansion of 
W(z), analogous series for ( 1 - 5 z + 7 z 2 - 4 z 3 )  p W(z) were generated for 
p = 1, 2, 3, 4. The p = 4 series has the last few terms constant, suggesting 
co(z)= 1 - z  [-see (5.3)]. Finally, the series for ( 1 - z ) ( 1 - 5 z +  
7 2 2 - - 4 2 3 )  4 m(2) has zero N =  14, 15 ..... 18 entries. These computer results 
are summarized by 

W ( Z )  ~ -  Z 2 [ -  1 - -  72 + 3022 - -  10823 -4- 283z 4 - -  58 lz 5 -}- 1100Z 6 

- -  1800,37 + 2093Z s -- 1537Z 9 + 632Z 1~ -- 120211 

+ O(Z16)] [(1 -- Z)(1 -- 5Z + 72 ~ -- 4Z3) 4] ' (5.4) 



1176 Forgacs and Pr ivman 

Table I. Enumerat ion Data for  NacNRZ(N), 
N = I  ..... 18, on the Square Lattice 

N N2cNR2(N) 

1 0 
2 1 
3 14 
4 126 
5 880 
6 5216 
7 27584 
8 134482 
9 617918 

10 2715810 
11 11533208 
12 47657874 
13 192595952 
14 764040260 
15 2983906774 
16 11498093742 
17 43793769160 
18 165109451636 

We conjecture that this expression is exact without the O(Z 16) contribution. 
The asymptotic behaviors (1.1) (1.2) correspond, via (5.2), to the 
( 1 - 2 z )  ~ singularity in W(z). Thus, we obtain the result 

v• = 1/2 (5.5) 

Both the exponent values and the form of the finite-size scaling 
function P(r)  for our problem are similar to those of the partially directed 
self-avoiding walk on the square lattice. 5'8 13 Finite-size results for walks 
have been reported in Refs. 5 and 8. Indeed, the structure of compact  
lattice animals is in many respects walklike. The value vii = 1 suggests that 
there is a finite number of sites per typical fixed-X column. The perpen- 
dicular fluctuations are Gaussian (v• = 1/2) and result from the wandering 
of the column locations along the Y axis, not from the "breathing" of the 
columns with respect to each other by variation of their widths. 

Finally, we note that the result v• = 1/2 can be confirmed by con- 
sidering the second moment  of the lowest, or the average, Y coordinate of 
the last column of each animal, averaged over all N-site animals. The 
appropriate generating functions for these quantitites satisfy recursion 
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relations that are too complicated to handle analytically. However, the 
general form can be analyzed to confirm that the functions 

L [NCNr2(N)] zu'~ (1 -.~z) 0-2v• (5.6) 
N--I  

have singularity ~ ( 1 -  2z) 3. Here r](N) is a "last column" Y-cluster-size 
measure as defined above. Details of these rather technical considerations 
are not reported in this paper. 

6. T R I A N G U L A R  LATTICE M O D E L  

It is of interest to have several exactly solvable variants of the directed 
compact lattice animal model. Indeed, one would like to test the critical 
exponent universality and compare the global structure of the generating 
functions. We recall that the fully directed square lattice model (~'1) has not 
been solved exactly. On the triangular lattice directed according to the rule 
of Fig. 1, exact solution is possible. We consider here only the number 
generating functions F~(z, l) and A(z, 1) (notation of Section3). The 
second argument, 1, will be omitted for brevity. 

x 

Yl 

Fig. 1. Triangular lattice directed along two of the three principal axes. Five lattice cells are 
shown. 
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Considering the connectivity of the triangular lattice (Fig. 1), one can 
easily find the analog of relation (2.9) for this lattice, 

Fg(z) = 1 + ~, (k + m) z'~Fm(z) (6.1) 
m = l  

One can also check that (2.10) and (2.11) apply. Calculation of the 
apropriate functions A(z) and B(z) proceeds as in Ref. t: (2.11) is sub- 
stituted in the k =  1 and k = 2  relations (6.1). We obtain a system of two 
linear equations, 

A + B = 1 +  ~ ( rn+l)zm(mA+B)  (6.2) 
m = l  

2 A + B = I +  ~ ( m + 2 ) z m ( m A + B )  (6.3) 
m = l  

After evaluating the sums over m, a straightforward algebra yields 

(1 - z ) 2 ( 1 - 3 z + z  2) 
B(z) - 1 - 6z + 10z 2 - -  7z 3 + z 4 (6.4) 

z(1 - z )  3 
A(z) - 1 - 6z + 1 0 z  2 - -  7z 3 + z 4 (6.5) 

The singularity nearest to the origin is a simple pole at zc = 2 -1, where, 
numerically, 

2 = 3.86313074324... (6.6) 

Thus, 0 = 0, as expected, and we also note that the structure of the solution 
is very similar to the square lattice moael.", (1) 

7. H I G H - D I M E N S I O N A L  M O D E L S  

Consider the d-dimensional hypercubic lattice with coordinate axes X, 
Y1, Y>--., Yd-1. Here X is the directed, "time" axis, while the connectivity 
along all the Yj axes is two-way. There are several possible definitions of 
compactness, all essentially restricting the allowed shape of the cluster cross 
section at each time level, i.e., for fixed X. We chose the following rule: at 
each X > 0 ,  the cluster sites form a straight line (root) of nearest neighbor 
sites parallel to one of the Yj axes. To avoid multiple counting of certain 
translationally and 90~ equivalent clusters, we require that at 
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X =  0 the root is along the Y1 axis with the site of lowest Y~ at the origin 
(Yj= 0). The connectivity rule is that each cluster site must be reachable 
through other cluster sites from the origin, by a walk of + X and _ Yj 
( j  = 1, 2 ..... d -  1) steps. 

As in Section 6, we restrict our consideration to the k-root cluster 
number generating functions Fg(z). Relation (2.9) is extended to read 

F k ( z ) = l +  ~ [ k + m - l + k m ( d - 2 ) ] z " F m ( z )  (7.1) 
m = l  

where the new km(d-2)  term accounts for the possibility of 90 ~ rotated 
roots parallel to Y2, Y3 ..... Yd 1 at X--  l. Relation (2.11) is valid here, but 
the identification of the full generating function with A(z), as in (2.10), is 
no longer correct. The functions A(z) and B(z) can be calculated as in 
Ref. 1, yielding 

( 1 - z ) [ ( 1 - z ) 3 - ( d - 2 ) z ( 1  + z ) - z ( 1 - z ) ]  
B(z) = 1 -- ( d+  3)z + 7z 2 - 423 (7.2) 

z(1 -z)2(d - 1 - z )  
A(z) = 1 - ( d+  3)z + 7z 2 - 423 (7.3) 

Let us denote the full generating function by T(z); then 

 lzt= u =  
N - - 1  n - - I  

= ~ z"[nA(z)+B(z)] 
n = l  

z [ ( 1 -  z ) 3 - ( d -  2)z 2] 
- 1 - ( d+  3)z + 7_72 - -  42 '3 (7.4) 

For  "physical" dimensionality values d =  2, 3 .... the singularity nearest to 
the origin is a simple pole at 2 -~, where 2(d) is given by 

12 
- -  = 7 + { [( 1 2 d -  13) 3 + ( 1 2 6 d -  181) 2 ] 1/2 _ ( 1 2 6 d -  181)} l/3 
~(d) 

- { [ ( 1 2 d -  13) 3 + ( 1 2 6 d -  181)2] 1/2 + ( 1 2 6 d -  181)} 1/3 (7.5) 

Thus, 0 = 0 for all physical d values. The nondegenerate, positive real root 
of the denominator of (7.4) exists for all - 0 o  < d <  + ~ .  Note, however, 
that for general d the use of (7.5) is not always straightforward; complex 
branch interpretation is needed. The singularity in the generating function 
can be "continued" to any d. However, for 

d <  do = 1.40972... (7.6) 
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other  roots  of  the denomina tor  of (7.4) move  closer to the origin of the z 
plane. [The  numerical  value in (7.6) is computer-genera ted . ]  As a result, 
the asymptot ic  form of Cu [see (7.4) and (1.1) with 0 = 0 ] ,  

C N ~ )~N(d) (7.7) 

is valid only for d > do. The fixed-cluster-size N ensemble is less suited for 
the cont inuat ion in dimensionali ty than the fixed-fugacity z grand- 
canonical  ensemble. 

The large-d behavior  of 2(d) can be calculated from (7.5). We find 

2(d) = d +  3 + O(1/d)  (7.8) 

The propor t ional i ty  to d, which in turn gives the lattice coordinat ion 
number  [ ( 2 d - 1 )  for the one-axis directed hypercubic lattice] is a rather 
general feature of cluster statistics models. 
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